Files: e492c2808c90ee151362420d6ac0b0d22cb943db / README.md
sslh -- A ssl/ssh multiplexer
sslh
accepts connections on specified ports, and forwards
them further based on tests performed on the first data
packet sent by the remote client.
Probes for HTTP, SSL, SSH, OpenVPN, tinc, XMPP are implemented, and any other protocol that can be tested using a regular expression, can be recognised. A typical use case is to allow serving several services on port 443 (e.g. to connect to SSH from inside a corporate firewall, which almost never block port 443) while still serving HTTPS on that port.
Hence sslh
acts as a protocol demultiplexer, or a
switchboard. Its name comes from its original function to
serve SSH and HTTPS on the same port.
Compile and install
Dependencies
sslh
uses libconfig
and libwrap.
For Debian, these are contained in packages libwrap0-dev
and
libconfig8-dev
.
For OpenSUSE, these are contained in packages libconfig9 and libconfig-dev in repository http://download.opensuse.org/repositories/multimedia:/libs/openSUSE_12.1/
For Fedora, you'll need packages libconfig
and
libconfig-devel
:
yum install libconfig libconfig-devel
If you can't find libconfig
, or just don't want a
configuration file, set USELIBCONFIG=
in the Makefile.
Compilation
After this, the Makefile should work:
make install
There are a couple of configuration options at the beginning of the Makefile:
USELIBWRAP
compiles support for host access control (seehosts_access(3)
), you will needlibwrap
headers and library to compile (libwrap0-dev
in Debian).USELIBCONFIG
compiles support for the configuration file. You will needlibconfig
headers to compile (libconfig8-dev
in Debian).USESYSTEMD
compiles support for using systemd socket activation. You will needsystemd
headers to compile (systemd-devel
in Fedora).
Binaries
The Makefile produces two different executables: sslh-fork
and sslh-select
:
sslh-fork
forks a new process for each incoming connection. It is well-tested and very reliable, but incurs the overhead of many processes.
If you are going to usesslh
for a "small" setup (less than a dozen ssh connections and a low-traffic https server) thensslh-fork
is probably more suited for you.sslh-select
uses only one thread, which monitors all connections at once. It is more recent and less tested, but only incurs a 16 byte overhead per connection. Also, if it stops, you'll lose all connections, which means you can't upgrade it remotely.
If you are going to usesslh
on a "medium" setup (a few thousand ssh connections, and another few thousand ssl connections),sslh-select
will be better.
If you have a very large site (tens of thousands of connections), you'll need a vapourware version that would use libevent or something like that.
Installation
In general:
make cp sslh-fork /usr/local/sbin/sslh cp basic.cfg /etc/sslh.cfg vi /etc/sslh.cfg
For Debian:
cp scripts/etc.init.d.sslh /etc/init.d/sslh
For CentOS:
cp scripts/etc.rc.d.init.d.sslh.centos /etc/rc.d/init.d/sslh
You might need to create links in /etc/rc<x>.d so that the server start automatically at boot-up, e.g. under Debian:
update-rc.d sslh defaults
Configuration
If you use the scripts provided, sslh will get its configuration from /etc/sslh.cfg. Please refer to example.cfg for an overview of all the settings.
A good scheme is to use the external name of the machine in
listen
, and bind httpd
to localhost:443
(instead of all
binding to all interfaces): that way, HTTPS connections
coming from inside your network don't need to go through
sslh
, and sslh
is only there as a frontal for connections
coming from the internet.
Note that 'external name' in this context refers to the
actual IP address of the machine as seen from your network,
i.e. that that is not 127.0.0.1
in the output of
ifconfig(8)
.
Libwrap support
Sslh can optionnaly perform libwrap
checks for the sshd
service: because the connection to sshd
will be coming
locally from sslh
, sshd
cannot determine the IP of the
client.
OpenVPN support
OpenVPN clients connecting to OpenVPN running with
-port-share
reportedly take more than one second between
the time the TCP connexion is established and the time they
send the first data packet. This results in sslh
with
default settings timing out and assuming an SSH connexion.
To support OpenVPN connexions reliably, it is necessary to
increase sslh
's timeout to 5 seconds.
Instead of using OpenVPN's port sharing, it is more reliable
to use sslh
's --openvpn
option to get sslh
to do the
port sharing.
Using proxytunnel with sslh
If you are connecting through a proxy that checks that the
outgoing connection really is SSL and rejects SSH, you can
encapsulate all your traffic in SSL using proxytunnel
(this
should work with corkscrew
as well). On the server side you
receive the traffic with stunnel
to decapsulate SSL, then
pipe through sslh
to switch HTTP on one side and SSL on the
other.
In that case, you end up with something like this:
ssh -> proxytunnel -e ----[ssh/ssl]---> stunnel ---[ssh]---> sslh --> sshd
Web browser -------------[http/ssl]---> stunnel ---[http]--> sslh --> httpd
Configuration goes like this on the server side, using stunnel3
:
stunnel -f -p mycert.pem -d thelonious:443 -l /usr/local/sbin/sslh -- \
sslh -i --http localhost:80 --ssh localhost:22
stunnel options:
-f
for foreground/debugging-p
for specifying the key and certificate-d
for specifying which interface and port we're listening to for incoming connexions-l
summonssslh
in inetd mode.
sslh options:
-i
for inetd mode--http
to forward HTTP connexions to port 80, and SSH connexions to port 22.
Capabilities support
On Linux (only?), you can compile sslh with USELIBCAP=1
to
make use of POSIX capabilities; this will save the required
capabilities needed for transparent proxying for unprivileged
processes.
Alternatively, you may use filesystem capabilities instead
of starting sslh as root and asking it to drop privileges.
You will need CAP_NET_BIND_SERVICE
for listening on port 443
and CAP_NET_ADMIN
for transparent proxying (see
capabilities(7)
).
You can use the setcap(8)
utility to give these capabilities
to the executable:
# setcap cap_net_bind_service,cap_net_admin+pe sslh-select
Then you can run sslh-select as an unpriviledged user, e.g.:
$ sslh-select -p myname:443 --ssh localhost:22 --ssl localhost:443
Caveat: CAP_NET_ADMIN
does give sslh too many rights, e.g.
configuring the interface. If you're not going to use
transparent proxying, just don't use it (or use the libcap method).
Transparent proxy support
On Linux and FreeBSD you can use the --transparent
option to
request transparent proxying. This means services behind sslh
(Apache, sshd
and so on) will see the external IP and ports
as if the external world connected directly to them. This
simplifies IP-based access control (or makes it possible at
all).
Linux:
sslh
needs extended rights to perform this: you'll need to
give it CAP_NET_ADMIN
capabilities (see appropriate chapter)
or run it as root (but don't do that).
The firewalling tables also need to be adjusted as follow.
The example connects to HTTPS on 4443 -- adapt to your needs ;
I don't think it is possible to have httpd
listen to 443 in
this scheme -- let me know if you manage that:
# iptables -t mangle -N SSLH
# iptables -t mangle -A OUTPUT --protocol tcp --out-interface eth0 --sport 22 --jump SSLH
# iptables -t mangle -A OUTPUT --protocol tcp --out-interface eth0 --sport 4443 --jump SSLH
# iptables -t mangle -A SSLH --jump MARK --set-mark 0x1
# iptables -t mangle -A SSLH --jump ACCEPT
# ip rule add fwmark 0x1 lookup 100
# ip route add local 0.0.0.0/0 dev lo table 100
Tranparent proxying with IPv6 is similarly set up as follows:
# ip6tables -t mangle -N SSLH
# ip6tables -t mangle -A OUTPUT --protocol tcp --out-interface eth0 --sport 22 --jump SSLH
# ip6tables -t mangle -A OUTPUT --protocol tcp --out-interface eth0 --sport 4443 --jump SSLH
# ip6tables -t mangle -A SSLH --jump MARK --set-mark 0x1
# ip6tables -t mangle -A SSLH --jump ACCEPT
# ip -6 rule add fwmark 0x1 lookup 100
# ip -6 route add local ::/0 dev lo table 100
Note that these rules will prevent from connecting directly to ssh on the port 22, as packets coming out of sshd will be tagged. If you need to retain direct access to ssh on port 22 as well as through sslh, you can make sshd listen to 22 AND another port (e.g. 2222), and change the above rules accordingly.
FreeBSD:
Given you have no firewall defined yet, you can use the following configuration to have ipfw properly redirect traffic back to sslh
/etc/rc.conf
firewall_enable="YES"
firewall_type="open"
firewall_logif="YES"
firewall_coscripts="/etc/ipfw/sslh.rules"
/etc/ipfw/sslh.rules
#! /bin/sh
# ssl
ipfw add 20000 fwd 192.0.2.1,443 log tcp from 192.0.2.1 8443 to any out
ipfw add 20010 fwd 2001:db8::1,443 log tcp from 2001:db8::1 8443 to any out
# ssh
ipfw add 20100 fwd 192.0.2.1,443 log tcp from 192.0.2.1 8022 to any out
ipfw add 20110 fwd 2001:db8::1,443 log tcp from 2001:db8::1 8022 to any out
# xmpp
ipfw add 20200 fwd 192.0.2.1,443 log tcp from 192.0.2.1 5222 to any out
ipfw add 20210 fwd 2001:db8::1,443 log tcp from 2001:db8::1 5222 to any out
# openvpn (running on other internal system)
ipfw add 20300 fwd 192.0.2.1,443 log tcp from 198.51.100.7 1194 to any out
ipfw add 20310 fwd 2001:db8::1,443 log tcp from 2001:db8:1::7 1194 to any out
General notes:
This will only work if sslh
does not use any loopback
addresses (no 127.0.0.1
or localhost
), you'll need to use
explicit IP addresses (or names):
sslh --listen 192.168.0.1:443 --ssh 192.168.0.1:22 --ssl 192.168.0.1:4443
This will not work:
sslh --listen 192.168.0.1:443 --ssh 127.0.0.1:22 --ssl 127.0.0.1:4443
Transparent proxying means the target server sees the real
origin address, so it means if the client connects using
IPv6, the server must also support IPv6. It is easy to
support both IPv4 and IPv6 by configuring the server
accordingly, and setting sslh
to connect to a name that
resolves to both IPv4 and IPv6, e.g.:
sslh --transparent --listen <extaddr>:443 --ssh insideaddr:22
/etc/hosts:
192.168.0.1 insideaddr
201::::2 insideaddr
Upon incoming IPv6 connection, sslh
will first try to
connect to the IPv4 address (which will fail), then connect
to the IPv6 address.
Systemd Socket Activation
If compiled with USESYSTEMD
then it is possible to activate
the service on demand and avoid running any code as root.
In this mode any listen configuration options are ignored and the sockets are passed by systemd to the service.
Example socket unit:
[Unit]
Before=sslh.service
[Socket]
ListenStream=1.2.3.4:443
ListenStream=5.6.7.8:444
ListenStream=9.10.11.12:445
FreeBind=true
[Install]
WantedBy=sockets.target
Example service unit:
[Unit]
PartOf=sslh.socket
[Service]
ExecStart=/usr/sbin/sslh -v -f --ssh 127.0.0.1:22 --ssl 127.0.0.1:443
KillMode=process
CapabilityBoundingSet=CAP_NET_BIND_SERVICE CAP_NET_ADMIN CAP_SETGID CAP_SETUID
PrivateTmp=true
PrivateDevices=true
ProtectSystem=full
ProtectHome=true
User=sslh
With this setup only the socket needs to be enabled. The sslh service will be started on demand and does not need to run as root to bind the sockets as systemd has already bound and passed them over. If the sslh service is started on its own without the sockets being passed by systemd then it will look to use those defined on the command line or config file as usual. Any number of ListenStreams can be defined in the socket file and systemd will pass them all over to sslh to use as usual.
To avoid inconsistency between starting via socket and starting directly via the service Requires=sslh.socket can be added to the service unit to mandate the use of the socket configuration.
Rather than overwriting the entire socket file drop in values can be placed in /etc/systemd/system/sslh.socket.d/<name>.conf with additional ListenStream values that will be merged.
In addition to the above with manual .socket file configuration there is an optional systemd generator which can be compiled - systemd-sslh-generator
This parses the /etc/sslh.cfg (or /etc/sslh/sslh.cfg file if that exists instead) configuration file and dynamically generates a socket file to use.
This will also merge with any sslh.socket.d drop in configuration but will be overriden by a /etc/systemd/system/sslh.socket file.
To use the generator place it in /usr/lib/systemd/system-generators and then call systemctl daemon-reload after any changes to /etc/sslh.cfg to generate the new dynamic socket unit.
Fail2ban
If using transparent proxying, just use the standard ssh
rules. If you can't or don't want to use transparent
proxying, you can set fail2ban
rules to block repeated ssh
connections from a same IP address (obviously this depends
on the site, there might be legimite reasons you would get
many connections to ssh from the same IP address...)
See example files in scripts/fail2ban.
Comments? Questions?
You can subscribe to the sslh
mailing list here:
http://rutschle.net/cgi-bin/mailman/listinfo/sslh
This mailing list should be used for discussion, feature requests, and will be the prefered channel for announcements.
Built with git-ssb-web