git ssb

0+

wanderer🌟 / js-dfinity-radix-tree



Tree: eb6dec9afd0f3cdb1ea6f2ddd051ae0b99bdb406

Files: eb6dec9afd0f3cdb1ea6f2ddd051ae0b99bdb406 / README.md

2490 bytesRaw

NPM Package
Build Status
Coverage Status

js-standard-style

Synopsis

:evergreen_tree: This implements a binary merkle radix tree. The point of using a binary radix tree is that it generates smaller proof size then trees with larger radixes. This tree is well suited for storing large dictonaries of fairly random keys. And is optimized for storing keys of the same length. If the keys are not random better performance can be achived by hashing them first. It builds on top of ipld-graph-builder
and the resulting state and proofs are generated using it.

Install

npm install dfinity-radix-tree

Usage

const RadixTree = require('js-dfinity-radix-tree')
const level = require('level')
const db = level('./tempdb')

async function main () {
  const prover = new RadixTree({
    db: db
  })

  await prover.set('test', Buffer.from('value'))
  await prover.set('doge', Buffer.from('coin'))
  await prover.set('cat', Buffer.from('dog'))
  await prover.set('monkey', Buffer.from('wrench'))

  // create a merkle root and save the tree
  const merkleroot = await prover.flush()

  // start a new Instance with the root
  const verifier = new RadixTree({
    db: db,
    root: merkleroot
  })

  const {value} = await verifier.get('monkey')
  console.log(value.toString())
}

main()

API

'./docs/'

Spefication

'./docs/spec.md'

Benchmarks

The result of the benchmarks show that the binary radix tree produces proofs on average %67 small then the Ethereum Trie with 100000 keys stored.

'./benchmarks/benchmarks.md'

License

(C) 2017 DFINITY STIFTUNG

All code and designs are open sourced under GPL V3.

image

Built with git-ssb-web